다중 선형 회귀

머신러닝 및 딥러닝/머신러닝

다중선형회귀 이론

다중선형회귀 단순 선형 회귀에서 독립변수의 개수만 늘어난 것이다. 따라서 단순 선형 회귀와 동일한 절차를 이용하여 분석을 수행할 수 있다. 단, 독립 변수의 수가 많아지므로 이로 인해 발생할 수 있는 경우들을(과적합) 고려해서 적절한 조치를 취해야한다 독립변수들의 최초 선택(feature_engineering > feature_selection) 회귀분석의 목적: 종속 변수를 가장 잘 설명하는 독립변수들의 성향/특징들을 찾아내어 이를 기반으로 기존의 자료를 설명하거나 새로운 결과를 예측하는 것 독립변수를 임의로 누락시키는 것은 해당 모델의 설명력이 낮아지는 문제 회귀 분석을 수행하는 경우, 관련 있는 독립변수는 일단 가급적 모두 고려 탐색적 데이터 분석(Exploratory Data Analysis) 수..

우상욱
'다중 선형 회귀' 태그의 글 목록