
머신러닝 및 딥러닝/머신러닝
경사하강법 이론
경사하강법 여러 종류의 문제에서 최적의 해법을 찾을 수 있는 일반적인 최적화(Optimization) 알고리즘 손실(비용) 함수를 최소화 하기위해 반복해서 파라미터를 조정하는 것 선형 회귀의 경우 손실함수(MSE(평균오차제곱))을 최소화하는 파라미터 W1, W0에 대해 함수의 현재 기울기(그래디언트)를 계산한 후 기울기가 감소하는 방향으로 진행하고, 기울기가 0이 되면 최솟값에 도달한 것 비유 : 앞이 보이지 않는 안개가 낀 산을 내려올 때는 모든 방향으로 산을 더듬어 가면서 산의 높이가 가장 낮아지는 방향으로 한발 씩 내딛어 내려올 수 있다. 경사하강법의 장점 함수가 너무 복잡해 미분 계수를 구하기 어려운 경우 경사하강법을 구현하는게 미분 계수를 구하는 것보다 더 쉬운 경우 데이터 양이 너무 많아 효율..